
An Incompressible Navier-Stokes with Particles Algorithm and Parallel
implementation

Dan Martin, Phil Colella, and Noel Keen
Applied Numerical Algorithms Group (ANAG)

Lawrence Berkeley National Laboratory

May 27, 2005

Outline:

• Adaptive Mesh Refinement

• Projection Methods for incompressible flow

• AMR Projection Method for 3d Incompressible Navier-Stokes

• AMR Projection Method for drag particles in incompressible flow

• The Chombo framework

Block-Structured Local Refinement (Berger and Oliger, 1984)

1
n+ 2

t
10 2

levellevellevel

t

t

sync sync

sync

n+1

n

t

refinement
level

Refined regions are organized into logically rectangular patches
Refinement performed in time as well as in space.
Paralellism by distributing patches on each refinement level among processors.

Constant-density Incompressible Navier-Stokes Equations

∂~u

∂t
+ (~u · ∇)~u = −∇p + ν∆~u

(∇ · ~u) = 0

∂s

∂t
+ (~u · ∇)s = 0

Projection Methods
Enforce incompressibility constraint (∇ · ~u = 0) by computing an intermediate
update without regard to the divergence constraint:

~u∗ = ~un −∆t[(~u · ∇)~u]n+ 1
2 + ν∆~un+ 1

2

then “project” onto the space of divergence-free vectors:

1. solve ∆p = ∇ · ~u∗

2. correct ~u: ~un+1 = ~u∗ −∆t∇p

Incompressible AMR Navier-Stokes (AMRINS)

• Implements a projection method for incompressible viscous flow.

• Freestream preservation maintained approximately using an advection
velocity correction computed using an auxiliary advected scalar.

• Viscous updates using L0-stable semi-implicit Runga-Kutta scheme

• level advance:2 Poisson + 2*D Helmholtz solves

• synchronization: 2 Poisson + D Helmholtz multilevel AMR solves

Accuracy of AMRINS code:

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

 10 100 1000

er
ro

r

1/dx for base grid

L2 Convergence of x-velocity

L2, non-AMR
L2, nRef=2
L2, nRef=4
2nd Order

Serial Performance for single-vortex-ring test problem

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3 3.5 4

no
rm

al
iz

ed
 c

el
l c

ou
nt

s/
ru

n
tim

es

nRef

Effect of AMR for single-ring test problem

normalized Runtime
normalized cellcounts

Parallel performance

Define a scaled execution time as nproc×runtime
probSize

 2500

 3000

 3500

 4000

 4500

 5000

 1 10 100 1000

sc
al

ed
 r

un
tim

e

scaled execution time

Scaled Execution Time vs. Number of Processors

32^3 base
64^3 base

128^3 base
serial + 25%

Prob size Num Avg Memory Min-Max mem AMR Run

Procs MB MB secs

32x32x48 1 433 433-433 2837

32x32x48 2 240 239-242 1459

32x32x48 4 143 136-148 823

32x32x48 8 91 80-105 449

32x32x48 16 61 48-78 286

32x32x48 32 43 13-68 221

64x64x96 8 354 327-384 2605

64x64x96 16 209 180-230 1413

64x64x96 32 126 106-166 853

64x64x96 64 85 37-151 597

128x128x192 64 312 256-365 2632

128x128x192 128 197 158-268 1698

Table 1: Current parallel performance of AMRINS code for baseline vortex-ring
problem

Base Problem Num Large Problem Large num Scaled

Size Procs Size processors Efficiency

32x32x48 1 64x64x96 8 1.13

2 16 1.03

4 32 0.96

8 64 0.75

32x32x48 1 128x128x192 64 1.07

2 128 0.86

64x64x96 8 128x128x192 64 0.99

16 128 0.83

Table 2: Scaled Efficiencies

Drag particles in an incompressible fluid

Particles and fluid interact through drag force, spread to mesh using numerical
δ-function.

∂~u

∂t
+ (~u · ∇)~u = −∇p + ν∆~u +

numParticles∑
n=1

~fnδε(~x− ~xn)

~fn = k(~ufluid(~xn)− ~un)

• Forcing on fluid tends to be singular (problem for the projection) – what we
really want is the divergence-free projection of the drag force.

• Projection of drag force on fluid can be computed analytically –
~Fd = (I − grad(∆−1)div)~F

– more accurate than directly projecting the drag force due to the particles.
(Cortez and Minion)
Problem – does not have compact support.

• However, Laplacian(projected force) does have compact support.

• (Extends Cortez & Minion approach to 3D)

Spreading particle drag force onto mesh:

• Set ~Rh = 0

• Over small region around particle, compute analytic divergence-free force
~Fd(~x) = ~fδε(~x− ~xi)− grad(∆−1)div(~fδε(~x− ~x)). (local)

• Compute discrete Laplacian of ~Fd : ~Rh = ~Rh + Lh
~FD. (local)

• Perform elliptic solve for projected force L~F = Rh using infinite-domain
boundary conditions. (physical boundary conditions at domain boundary
will be enforced by the projection)

• use ~F as forcing term for momentum update for fluid.

Particle Position and Velocity Updates
(predictor-corrector method):
(based on solution to equation of motion for particles)

• Interpolate (cell-centered) velocity field to particle positions

• predict velocity: ~u∗i = (~un
i − (~ufluid + ~g/k))e−∆t∗k/m + (~ufluid + ~g/k)

• x∗i = xn
i + ∆t~un

i

AMR Particle Incompressible Navier-Stokes (PAMRNS) code

• No refinement in time.

• Separate processor distributions for particles and fluid

Prob size Num Max Mem AMR Run Particle update

Procs (MB) (sec) (sec)

32x32x32 8 72.5 100.4 0.59

64x64x64 16 115.7 178.4 1.2

64x64x64 64 75.8 103.4 0.38

128x128x128 32 317.8 597.3 3.73

128x128x128 64 175.1 352.4 2.24

128x128x128 128 117.3 220.8 1.41

Table 3: Current parallel performance of AMRINS with particles code for vortex-
ring problem with 32,768 particles

Base Problem Num Large Problem Large num Scaled

Size Procs Size processors Efficiency

32x32x32 8 64x64x64 64 0.97

64x64x64 16 128x128x128 128 0.81

Table 4: Scaled Efficiencies

Chombo: a Software Framework for Block-Structured AMR

Requirement: to support a wide variety of applications that use
block-structured AMR using a common software framework.

• Mixed-language model: C++ for higher-level data structures, Fortran for
regular single-grid calculations.

• Reuseable components. Component design based on mapping of
mathematical abstractions to classes.

• Build on public-domain standards: MPI, HDF5, VTK.

• Interoperability with other SciDAC ISIC tools: grid generation (TSTT), solvers
(TOPS), performance analysis tools (PERC).

Previous work: BoxLib (LBNL/CCSE), KeLP (Baden, et. al., UCSD), FIDIL
(Hilfinger and Colella).

Layered Design

• Layer 1. Data and operations on unions of boxes – set calculus, rectangular
array library (with interface to Fortran), data on unions of rectangles, with
SPMD parallelism implemented by distributing boxes over processors.

• Layer 2. Tools for managing interactions between different levels of refinement
in an AMR calculation – interpolation, averaging operators, coarse-fine
boundary conditions.

• Layer 3. Solver libraries – AMR-multigrid solvers, Berger-Oliger
time-stepping.

• Layer 4. Complete parallel applications.

• Utility layer. Support, interoperability libraries – API for HDF5 I/O,
visualization package implemented on top of VTK, C API’s.

ChomboVis Interactive Visualization and Analysis Tools

• “AMR-aware”

− Block-structured representation of the data leads to efficiency.

− Useful as a debugging tool (callable from debuggers (gdb))

• Visualization tools based on VTK, a open-source visualization library.

• Implementation in C++ and Python

− GUI interface for interactive visualization

− Command-line python interface to visualization and analysis tools, batch
processing capability – goal is a full analysis tool.

• Interface to HDF5 I/O along with C API provides access to broad range of
AMR users. (“Framework-neutral”)

Acknowledgements
DOE Applied Mathematical Sciences Program
DOE HPCC Program
DOE SciDAC Program
NASA Earth and Space Sciences Computational Technologies Program

